

Welcome to Tribler’s documentation!

Contents:

	Introduction
	Obtaining the latest release

	Obtaining support

	Contributing

	Packaging Tribler

	Submodule notes

	How to contribute to the Tribler project?
	Checking out the Stabilization Branch

	Reporting bugs

	Pull requests

	Branching model and development methodology
	Branching model

	Release lifecycle

	Tags

	Setting up the local repo

	Working on new features or fixes

	Getting your changes merged upstream

	Misc guidelines

	Setting up your development environment
	Windows

	MacOS

	Linux

	Building Tribler
	Windows

	MacOS

	Debian and derivatives

	Other Unixes

	Tribler REST API
	Overview

	Making requests

	Error handling

	Download states

	Endpoints

	TrustChain
	Using TrustChain

	Using TrustChain in your project

	Channels architecture
	What is a channel?

	Metadata Store

	GigaChannel Manager

	GigaChannel Community

	RemoteQuery Community

	VSIDS heuristics

Indices and tables

	Index

	Module Index

	Search Page

Tribler

[image: Build status on Jenkins] [http://jenkins-ci.tribler.org/job/Test_tribler_devel/] [image: Documentation Status] [https://tribler.readthedocs.io/en/devel/?badge=devel] [image: Contributors] [https://github.com/Tribler/tribler/graphs/contributors] [image: Pull Requests] [https://github.com/Tribler/tribler/pulls] [image: Issues] [https://github.com/Tribler/tribler/issues] [image: Downloads(7.0.2)] [https://github.com/Tribler/tribler/releases] [image: Downloads(7.1.3)] [https://github.com/Tribler/tribler/releases] [image: Downloads(7.2.2)] [https://github.com/Tribler/tribler/releases] [image: Downloads(7.3.2)] [https://github.com/Tribler/tribler/releases] [image: Downloads(7.4.1)] [https://github.com/Tribler/tribler/releases] [image: Downloads(7.5.1)] [https://github.com/Tribler/tribler/releases] [image: DOI number] [https://zenodo.org/badge/latestdoi/8411137] [image: openhub] [https://www.openhub.net/p/tribler]

Towards making Bittorrent anonymous and impossible to shut down.

We use our own dedicated Tor-like network for anonymous torrent downloading. We implemented and enhanced the Tor protocol specifications plus merged them with Bittorrent streaming. More info: https://github.com/Tribler/tribler/wiki
Tribler includes our own Tor-like onion routing network with hidden services based seeding and end-to-end encryption, detailed specs: https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications

The aim of Tribler is giving anonymous access to online (streaming) videos. We are trying to make privacy, strong cryptography and authentication the Internet norm.

Tribler currently offers a Youtube-style service. For instance, Bittorrent-compatible streaming, fast search, thumbnail previews and comments. For the past 11 years we have been building a very robust Peer-to-Peer system. Today Tribler is robust: “the only way to take Tribler down is to take The Internet down” (but a single software bug could end everything).

We make use of submodules, so remember using the –recursive argument when cloning this repo.

Obtaining the latest release

Just click here [https://github.com/Tribler/tribler/releases/latest] and download the latest package for your OS.

Obtaining support

If you found a bug or have a feature request, please make sure you read our contributing page [http://tribler.readthedocs.io/en/devel/contributing.html] and then open an issue [https://github.com/Tribler/tribler/issues/new]. We will have a look at it ASAP.

Contributing

Contributions are very welcome!
If you are interested in contributing code or otherwise, please have a look at our contributing page [http://tribler.readthedocs.io/en/devel/contributing.html].
Have a look at the issue tracker [https://github.com/Tribler/tribler/issues] if you are looking for inspiration :).

Running Tribler from the repository

First clone the repository:

git clone --recursive https://github.com/Tribler/tribler.git

Second, install the dependencies.

Setting up your development environment

We support development on Linux, macOS and Windows. We have written
documentation that guides you through installing the required packages when
setting up a Tribler development environment.

	Linux [http://tribler.readthedocs.io/en/devel/development/development_on_linux.html]

	Windows [http://tribler.readthedocs.io/en/devel/development/development_on_windows.html]

	macOS [http://tribler.readthedocs.io/en/devel/development/development_on_osx.html]

Running

Now you can run tribler by executing the tribler.sh script on the root of the repository:

./src/tribler.sh

On Windows, you can use the following command to run Tribler:

python run_tribler.py

Packaging Tribler

We have written guides on how to package Tribler for distribution on various systems. Please take a look here [http://tribler.readthedocs.io/en/devel/building/building.html].

Submodule notes

	As updated submodules are in detached head state, remember to check out a branch before committing changes on them.

	If you forgot to check out a branch before doing a commit, you should get a warning telling you about it. To get the commit to a branch just check out the branch and do a git cherry-pick of the commit.

	Take care of not accidentally committing a submodule revision change with git commit -a.

	Do not commit a submodule update without running all the tests first and making sure the new code is not breaking Tribler.

How to contribute to the Tribler project?

Checking out the Stabilization Branch

The stabilization branch release-X.Y.Z contains the most up to date bugfixes. If your issue cannot be reproduced there, it is most likely already fixed.

To backup your Tribler installation and checkout the latest version of the stabilization branch, please perform the following steps.
* Copy the .Tribler folder to a safe location on your system (for instance the desktop) Make sure to leave the original folder on its original location. This folder is located at ~/.Tribler/ (Linux/OS X) or %APPDATA\.Tribler (Windows).
* Remove the tribler installation folder.
* Go to the latest tested version of Tribler [https://jenkins-ci.tribler.org/job/Build-Tribler_release/job/Build/lastStableBuild/] and under ‘Build Artifacts’, download the package appropriate to your operating system.
* Install/unzip this package.

To revert back to your original version of Tribler, download the installer again [https://github.com/Tribler/tribler/releases] and install it. Afterwards you can restore your backed up Tribler data folder.

Reporting bugs

	Make sure the issue/feature you want to report doesn’t already exist.

	If you want to report more than one bug or feature, create individual issues for each of them.

	Use a clear descriptive title.

	
	Provide at least the following information:
	
	The version of Tribler that you are using, if you are running from a branch, branch name and commit ID.

	The OS and version you are running.

	Step by step instructions to reproduce the issue in case it’s a bug.

	
	Attach Tribler’s log file. On Windows, these are found in %APPDATA%. On Linux distributions, the log file is located in ~/.Tribler/. On OS X, the crash logs can be found in ~/Library/Logs/DiagnosticReports and logger output can be found in the syslog. The location of this log is /var/log/system.log. You can use the following command to extract Tribler-related lines from the syslog: syslog -C |grep -i tribler > ~/tribler.log. Please have a look at the content of the log files before posting it in case you want to edit out something.
	
	Does it still happen if you move %APPDATA%\.Tribler away temporarily? (Do not delete it!)

	Do you have any other software installed that might interfere with Tribler?

Pull requests

	When creating a new Pull request, please take note of the following:
	
	New features always go to devel.

	If there is an unreleased release-X.Y.Z branch, fixes go there.

	Otherwise, fixes go to devel.

	Before starting to work on a feature or fix, check that nobody else is
working on it by assigning yourself the corresponding issue. Create one if it
doesn’t exist. This is also useful to get feedback about if a given feature
would be accepted. If you are not a member of the project, just drop a
comment saying that you are working on that.

	Create one PR per feature/bugfix.

	Provide tests for any new features/fixes you implement and make sure they
cover all methods and at least the important branches in the new/updated
code. We use the pytest [https://pytest.org] framework, and use fixtures to specify the components enabled
in each test by using fixtures [https://docs.pytest.org/en/stable/fixture.html]. Please do not enable
components that are not strictly necessary for the test you are writing (e.g., libtorrent) as they will slow down
the duration of test execution.

	If implementing a reasonably big or experimental feature, make it toggleable
if possible (For instance for a new community, new GUI stuff, etc.).

	When you make a change to the user interface, please attach a screenshot of your changes to the pull request. This helps reviewers since it avoids the need for them to manually checkout your code to see what has been changed.

	
	Keep a clean and nice git history:
	
	Rebase instead of merging back from the base branch.

	Squash fixup commits together.

	Have nice and descriptive commit messages.

	Do not commit extraneous/auto-generated files.

	Use Unix style newlines for any new file created.

	No print statements if it’s not really justified (command line tools and such).

	Do an autopep8 pass before submitting the pull request.

	Do a pylint pass with the .pylintrc on the root of the repository and
make sure you are not raising the base branch violation count, it’s bad enough as it is :).

	For more PR etiquette have a look here [https://github.com/blog/1943-how-to-write-the-perfect-pull-request].

Branching model and development methodology

In this post we’ll explain the branching model and development methodology we use at TUDelft [http://www.ewi.tudelft.nl/en/] on the Tribler [https://github.com/Tribler/tribler] project.

This is mostly targeted at new students joining the team. However, it may give you some useful ideas if you are working on a similar project type.

Branching model

Tribler is developed mainly by university students (mostly MSC and PHDs) that will work on Tribler for a relatively short period of time. So pull requests usually require several review cycles and some of them take a long time to be completed and merged (development of new features are usually part of Master thesis subjects or papers and suchlike). This makes it rather hard to implement anything like traditional unsupervised continuous integration [https://en.wikipedia.org/wiki/Continuous_integration].

Our branching model follows the GitFlow model described at length in Vincent Driessen’s post [http://nvie.com/posts/a-successful-git-branching-model/].

Our main repository contains 2 permanent branches:

	devel: The main development branch; all new features and fixes for them belong here. Every time a new release cycle is started, a new release-X.Y.Z(-abc) branch is forked from it.

	master: Contains the code of the latest stable release. It gets updated from release- after every release.

Release lifecycle

We follow SemVer [https://semver.org/] notation for release naming:

	Stable release name: <MAJOR>.<MINOR>.<PATCH>

	Release candidate name: <MAJOR>.<MINOR>.<PATCH>-RC<NUMBER>

We have to create a new branch For every MAJOR or MINOR release.

Therefore the following structure of the branch name is used: “release/<MAJOR>.<MINOR>”.

Example: “release/7.8”

The release lifecycle:

	A release branch forks from devel.

	The release branch is checked by running the application-tester

	In case no errors, a release candidate (RC) is published as pre-release in Github and published to the forum as release post.

	After a while (1-2 weeks), if there are no critical bugs, the release candidate is considered stable and ready for stable release.

	A stable release tag is created and the release is published in Github. A forum post is created to inform the users in the forum.

	The release branch is merged to devel

In case of an error that needs to be fixed asap in the published stable release:

	A fix is committed to the corresponding release branch

	The release branch is checked by running the application-tester

	The fixed release is delivered to users

	The release branch is merged to devel

A release is started by forking from the top of devel.
From that moment, all the bugfixes relevant to the current release must be merged into the corresponding release branch.
No new features could be added to it.

When the release is ready for publishing, it is merged back to devel to integrate the bugfixes.

Tags

Every revision that will result in a (pre)release gets tagged with a version number.

Setting up the local repo

	Fork Tribler’s upstream repository [https://github.com/Tribler/tribler#fork-destination-box].

	Make a local clone of it:

git clone -o MrStudent --recursive --recurse-submodules --single-branch \
git@github.com:MrStudent/tribler

	Add the upstream remote:

git remote add upstream https://github.com/Tribler/tribler

Note that an /HTTPS/ URL is used here instead of an /SSH/ one (git@github.com/yadayada). This is done in order to prevent accidental pushes to the main repository. However, it will only work if you don’t set up /HTTPS/ auth for github. Any attempt to push something there and git will ask you for credentials.

	Profit!

Working on new features or fixes

	Make sure there’s an issue for it and get it assigned to you. If there isn’t, create it yourself. Otherwise you risk your changes not getting accepted upstream or wasting time on changes that are already being worked on by other developers.

	Create your feature or bugfix branch. New feature branches can be created like this:

git fetch --all && git checkout upstream/devel -b fix_2344_my_new_feature

For bug fixes:

git fetch --all && git checkout upstream/release-X.Y.Z -b fix_2344_my_new_bugfix

2344 would be the issue number this branch is dealing with. This makes it trivial to identify the purpose of a branch if one hasn’t had been able to work on it for a while and can’t remember right away.

	Create a Pull Request [https://github.com/Tribler/tribler/compare].

It is usually a good idea to create a pull request for a branch even if it’s a work in progress. Doing so will make our Jenkins instance [https://jenkins-ci.tribler.org] run all the checks, tests and experiments every time you push a change so you can have continuous feedback on the state of your branch.

When creating a PR, always prepend the PR title with WIP until it’s ready for the final round of reviews. More about this on the next section.

Notes:

	Always fork directly from upstream’s remote branches as opposed to your own (remote or local) devel or release- branches. Those are useless as they will quickly get out of date, so kill them with fire:

git branch -d release-X.Y.Z
git branch -d devel

	Once one of your branches has been merged upstream try to always delete them from your remote to avoid cluttering other people’s remote listings (I’ve got around 15 remotes on my local Tribler repos and it can become annoying to look for a particular branch among dozens and dozens of other people’s stale branches). This can be done either from github’s PR web interface by clicking on the “delete branch” button after the merge has been done or with:

git push MrStudent :fix_2344_my_new_bugfix

Getting your changes merged upstream

When you think your PR is complete you need to get at least one peer to review your proposed changes as many times as necessary until it’s ready. If you can’t agree on something add another peer to the discussion to break the tie or talk to the lead developer.

All updates during the review/fix iteration cycles should be made with fixup commits to make it easier for the reviewer(s) to spot the new changes that need review on each iteration. (read the --fixup argument on the git-commit manpage if you don’t know what a fixup commit is).

Once the reviewer gives the OK and the tests and checks are passing, the fixup commits can then be squashed and the WIP prefix can be switched to READY. The lead developer will then do the final review round.

As mentioned before, any requested modifications should come in the form of fixup commits to ease reviewing.

Once the final OK is given, all fixup commits should be squashed and the branch will get merged.

Misc guidelines

	
	Keep an eye on the PRs you’ve reviewed
	You will probably learn something from other reviewers and find out what you missed out during yours.

	
	Don’t send PR from your remote’s ~devel~ branch
	Use proper names for your branches. It will be more informative and they become part of the merge commit message.

	
	Keep it small
	The smaller the PRs are, the less review cycles will be needed and the quicker they will get merged.

	
	Try to write as many tests as you can before writing any code
	It will help you think about the problem you are trying to solve and it usually helps to write code that’s easier to test.

	
	Have the right amount of commits on your PRs
	Don’t have a feature implementation spread across a gazillion commits. For instance if a given feature requires some refactoring, your history could look like this:

	“Refactor foo class to allow for bar” (At this point, the code should still work)

	“Tests for feature $X”

	“Implement feature $X”

	
	Write clean and self contained commits
	Each commit should make sense and be reviewable by itself. It doesn’t make sense to break something on one commit and fix it on another later on in the same PR. It also makes reviews much harder.

	
	Avoid unrelated and/or unnecessary modifications
	If you are fixing a bug or implementing a feature, avoid unnecessary refactoring, white space changes, cosmetic code reordering, etc. It will introduce gratuitous merge conflicts to your and others’ branches and make it harder to track changes (for instance with git blame).

	
	Don’t rename a file and modify it on the same commit
	If you need to rename and modify a file on the same PR, do so in two commits. This way git will always know what’s going on and it will be easier to track changes across file renames.

	
	Don’t send pull requests with merge commits on them
	Always rebase or cherry pick. If a commit on devel introduces merge conflicts in your branch, fix your commits by rebasing not by back merging and creating a conflict resolution commit.

	
	If one of your commits fixes an issue, mention it
	Add a “Closes #1234” line to the comment’s body section (from line 3 onwards). This way a reference to this particular commit will be created on the issue itself and once the commit hits the target branch the issue will be closed automatically. If a whole PR is needed to close a particular issue, add the “Closes” comment on the PR body.

	
	Capitalize the commit’s subject
	We are civilized people after all :D

	
	Write concise commit messages
	If a particular commit deserves a longer explanation, write a short commit message, leave a blank line after it and then go all Shakespeare from the third line (message body) onwards.

	
	Read this [http://chris.beams.io/posts/git-commit]
	Really, do it.

Setting up your development environment

This page contains instructions on how to setup your development environment to run Tribler from source.

Windows

This section contains information about setting up a Tribler development environment on Windows. Unlike Linux based systems where installing third-party libraries is often a single apt-get command, installing and configuring the necessary libraries requires more attention on Windows. Moreover, the Windows environment has different file structures. For instance, where Linux is working extensively with .so (shared object) files, Windows uses DLL files.

Introduction

In this guide, all required dependencies of Tribler will be explained. It presents how to install these dependencies. Some dependencies have to be built from source whereas other dependencies can be installed using a .msi or .exe installer. The guide targets Windows 7 or higher, 64-bit systems, however, it is probably not very hard to install 32-bit packages.

First, Python 3 should be installed. If you already have a Python version installed, please check whether this version is 64 bit before proceeding.

python -c "import struct;print(8 * struct.calcsize('P'))"

This outputs whether your current installation is 32 or 64 bit.

Python can be downloaded from the official Python website [https://www.python.org/downloads/]. You should download the Windows x86-64 MSI Installer which is an executable. During the setup, remember to add Python to the PATH variable to access Python from the command line. The option to add Python to the PATH variable is unchecked by default! You can verify whether Python is installed correctly by typing python in the command line. If they are not working, verify whether the PATH variables are correctly set. Instructions on how to set path variable can be found here [http://www.computerhope.com/issues/ch000549.htm].

In order to compile some of the dependencies of Tribler, you will need the Visual Studio installed which can be downloaded from here [https://www.visualstudio.com/downloads/download-visual-studio-vs] or here [https://imagine.microsoft.com/en-us/Catalog/Product/101]. You should select the community edition. Visual Studio ships with a command line interface and all required tools that are used for building some of the Python packages. After the installation of Visual Studio, you should install the Visual C++ tools. This can be done from within Visual Studio by creating a new Visual C++ project. Visual Studio then gives an option to install the Visual C++ developer tools.

In case importing one of the modules fail due to a DLL error, you can inspect if there are files missing by opening it with Dependency Walker. It should show missing dependencies.

libtorrent

First, install Boost which can be downloaded from SourceForge [http://sourceforge.net/projects/boost/files/boost-binaries/]. Make sure to select the latest version and choose the version is compatible with your version of Visual C++ tools (probably msvc-14).

After installation, you should set an environment variable to let libtorrent know where Boost can be found. You can do this by going to Control Panel > System > Advanced > Environment Variables (more information about setting environment variables can be found here [http://www.computerhope.com/issues/ch000549.htm]). Now add a variable named BOOST_ROOT and with the value of your Boost location. The default installation location for the Boost libraries is C:\\local\\boost_<BOOST VERSION> where <BOOST VERSION> indicates the installed Boost version.

Next, you should build Boost.build. You can do this by opening the Visual Studio command prompt and navigating to your Boost libraries. Navigate to tools\\build and execute bootstrap.bat. This will create the b2.exe file. In order to invoke b2 from anywhere in your command line, you should add the Boost directory to your user PATH environment variable. After modifying your PATH, you should reopen your command prompt.

Now, download the libtorrent source code from GitHub [https://github.com/arvidn/libtorrent/releases] and extract it. It is advised to compile version 1.0.8. Note that you if you have a 32-bit system, you can download the .msi installer so you do not have to compile libtorrent yourself. Open the Developer Command Prompt shipped with Visual Studio (not the regular command prompt) and navigate to the location where you extracted the libtorrent source. In the directory where the libtorrent source code is located, navigate to bindings\\python and build libtorrent by executing the following command (this takes a while so make sure to grab a coffee while waiting):

b2 boost=source libtorrent-link=static address-model=64

This command will build a static libtorrent 64-bit debug binary. You can also build a release binary by appending release to the command given above. After the build has been completed, the resulting libtorrent.pyd can be found in LIBTORRENT_SOURCE\\bindings\\python\\bin\\msvc-14\\debug\\address-model-64\\boost-source\\link-static\\ where LIBTORRENT_SOURCE indicates the directory with the libtorrent source files. Copy libtorrent.pyd to your site-packages location (the default location is C:\\Python37\\Lib\\site-packages)

After successfully copying the libtorrent.pyd file either compiled or from the repository, you can check if the installation was successful:

python -c "import libtorrent" # this should work without any error

libsodium

Libsodium is required for the libnacl library, used for cryptographic operations. Libsodium can be download as precompiled binary from their website [https://download.libsodium.org/libsodium/releases/]. Download the latest version, built with msvc. Extract the archive to any location on your machine. Next, you should add the location of the dynamic library to your PATH variables (either as system variable or as user variable). These library files can be found in LIBSODIUM_ROOT\\x64\\Release\\v142\\dynamic\\ where LIBSODIUM_ROOT is the location of your extracted libsodium files. After modifying your PATH, you should reopen your command prompt. You test whether Python is able to load libsodium.dll by executing:

python -c "import ctypes; ctypes.cdll.LoadLibrary('libsodium')"

Note that this might fail on Python 3.8, since directories have to be explicitly whitelisted to load DLLs from them. You can either copy the libsodium.dll to your System32 directory or by whitelisting that directory using os.add_dll_directory when running Tribler.

Additional Packages

There are some additional packages which should be installed. They can easily be installed using pip:

pip install aiohttp aiohttp_apispec cffi chardet configobj cryptography decorator gmpy2 idna libnacl lz4 \
netifaces networkx numpy pillow psutil pyasn1 PyQt5 pyqtgraph pywin32 pyyaml

To enable Bitcoin wallet management (optional), you should install the bitcoinlib library (support for this wallet is highly experimental):

pip install bitcoinlib==0.4.10

Running Tribler

You should now be able to run Tribler from command line. Grab a copy of the Tribler source code and navigate in a command line interface to the source code directory. Start Tribler by executing the Batch script in the tribler/src directory:

tribler.bat

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

MacOS

Tribler development environment setup on MacOS (10.10 to latest).

HomeBrew

This guide will outline how to setup a Tribler development environment on Mac.

PyQt5

If you wish to run the Tribler Graphical User Interface, PyQt5 should be available on the system. To install PyQt5, we first need to install Qt5, a C++ library which can be installed with Brew:

brew install python3 qt5 sip pyqt5
brew cask install qt-creator # if you want the visual designer
brew link qt5 --force # to allow access qmake from the terminal

qmake --version # test whether qt is installed correctly

Libtorrent

You can install libtorrent with Brew using the following command:

brew install libtorrent-rasterbar

To verify a correct installation, you can execute:

python3
>>> import libtorrent

Symbol not found: _kSCCompAnyRegex error

If you see Symbol not found: _kSCCompAnyRegex error, then follow
https://github.com/Homebrew/homebrew-core/pull/43858 for the explanation.

You can build libtorrent by yourself: http://libtorrent.org/python_binding.html
or by using this workaround from PR:

	Edit brew formula:

brew edit libtorrent-rasterbar

	Add on the top of the install function ENV.append string as described below:

def install
 ENV.append "LDFLAGS", "-framework SystemConfiguration -framework CoreFoundation"

	Build libtorrent-rasterbar from source:

brew install libtorrent-rasterbar --build-from-source

Other Packages

There are a bunch of other packages that can easily be installed using pip and brew:

brew install gmp mpfr libmpc libsodium
cd src && python3 -m pip install -r requirements.txt

To enable Bitcoin wallet management (optional), you should install the bitcoinlib library (support for this wallet is experimental):

python3 -m pip install bitcoinlib==0.4.10

Tribler

The security system on MacOS can prevent libsodium.dylib from being dynamically linked into Tribler when running Python. If this library cannot be loaded, it gives an error that libsodium could not be found. This is because the DYLD_LIBRARY_PATH cannot be set when Python starts. More information about this can be read here [https://forums.developer.apple.com/thread/13161].

The best solution to this problem is to link or copy libsodium.dylib into the Tribler root directory.

git clone --recursive https://github.com/Tribler/tribler.git
cd tribler
cp /usr/local/lib/libsodium.dylib ./ || cp /opt/local/lib/libsodium.dylib ./

You can now run Tribler by executing the following bash script in the src directory:

./tribler.sh

Proceed proceed to Build instructions

Help

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

Linux

This section contains information about setting up a Tribler development environment on Linux systems.

Debian/Ubuntu/Mint

First, install the required dependencies by executing the following command in your terminal:

sudo apt install git libssl-dev libx11-6 libgmp-dev python3 python3-minimal python3-pip python3-libtorrent python3-pyqt5 python3-pyqt5.qtsvg python3-scipy

Secondly, install python packages

pip3 install aiohttp aiohttp_apispec chardet configobj decorator libnacl matplotlib netifaces networkx pony psutil pyasn1 requests lz4 pyqtgraph pyyaml

Then, install py-ipv8 python dependencies

cd src/pyipv8
pip3 install --upgrade -r requirements.txt

You can now clone the Tribler source code, and run Tribler by executing the following commands:

git clone https://github.com/tribler/tribler --recursive
cd tribler/src
./tribler.sh

Alternatively, you can run the latest stable version of Tribler by downloading and installing the .deb file from here [https://github.com/tribler/tribler/releases/]. This option is only recommended for running Tribler and is not suitable for development.

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

Building Tribler

This page contains instructions on how to build and package Tribler.

Windows

This section contains information about building Tribler on Windows. In the end you should be left with a .exe file which, when opened, enables users to install Tribler on their system.
This guide installs a 64-bit version of Tribler and has been tested on Windows 10 and Windows 2008 Server R2, 64-bit. It is recommended to create this builder on a system that is already able to run Tribler from a git checkout (it means that all the required packages required by Tribler are installed already). In case you want to build a 32 bit version, just install all the dependencies mentioned in 32 bit version.
Information about setting up a developer environment on Windows can be found here.

When you have installed zope, an empty __init__.py file must be present in the zope folder. If this file is missing, a No module named zope error will be thrown. Create this file in the site-packages/zope folder if it does not exist.

Required packages

To build a Tribler installer, you’ll need some additional scripts and packages. The versions used as of writing this guide are mentioned next to the package or script.
* The git command tools (version 2.7.0) are required to fetch the latest release information. These can be downloaded from here [https://git-scm.com/download/win].
* PyInstaller, a tool to create an executable from python files. Install the latest version from pip: pip install pyinstaller.
* The builder needs to find all packages that are required by Tribler so make sure you can run Tribler on your machine and that there are no missing dependencies.
* Nullsoft Scriptable Install System (NSIS) (version 2.5.0) is a script-driven Installer authoring tool for Microsoft Windows with minimal overhead. It can be downloaded here [http://nsis.sourceforge.net/Download]. We selected version 2.5 as the uninstall functions were not called properly in 3.03b.
* Three plugins are required.The UAC plugin is the first. This can be downloaded from here [http://nsis.sourceforge.net/UAC_plug-in] (version 0.2.4c). How to install a plugin can be found here [http://nsis.sourceforge.net/How_can_I_install_a_plugin].
* The second plugin that is needed is AccessControl plug-in (version 1.0.8.1). It can be downloaded here [http://nsis.sourceforge.net/AccessControl_plug-in].
* The third plugin required is NSIS Simple Firewall Plugin (version 1.2.0). You can download it here [http://nsis.sourceforge.net/NSIS_Simple_Firewall_Plugin].
* The fourth plugin needed is NSProcess (Version 1.6.7), which can be downloaded here [http://nsis.sourceforge.net/NsProcess_plugin].
* A version of Microsoft Visual Studio should be installed (we use 2012), but make sure you do not have the build-tools only. The full (community) edition can be downloaded here [https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx].

Building & Packaging Tribler

Start by cloning Tribler if you haven’t done already (using the git clone --recursive command).
Next, create a build folder directly on your C:\ drive.
Inside the build folder, put the following items:

	A folder certs containing a .pfx key. In our case it’s named swarmplayerprivatekey.pfx. Make sure to rename paths in makedist_win.bat to match your file name.

	vc_redist_110.exe (Visual C++ Redistributable for Visual Studio 2012), which is available here [https://www.microsoft.com/en-us/download/details.aspx?id=30679]. In case you build 32 bit, get the x86 version. Once more, don’t forget to rename the file.

	libsodium.dll which can be downloaded from libsodium.org [https://download.libsodium.org/libsodium/releases/] (as of writing version 1.0.8).

	The openssl dll files libeay32.dll, libssl32.dll and ssleay32.dll (place them in a directory named openssl).

Then, set a PASSWORD environment variable [https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx?mfr=true] with its value set to the password matching the one set in your .pfx file.

Finally, open a command prompt and enter the following commands (Change 11.0 depending on your version of Microsoft Visual Studio):
Note that for building 32 bit you need to pass anything but 64, i.e. 32 or 86 to the update_version_from_git.py script.

cd tribler
python build/update_version_from_git.py 64
build\win\makedist_win.bat 64

This builds an .exe installer which installs Tribler.

MacOS

This guide explains how to build Tribler on MacOS (10.10 to 10.13). The final result is a .dmg file which, when opened, allows Tribler.app to be copied to the Applications directory and or launched. Make sure the required packages required by Tribler are installed
from the Development instructions.

Required packages

	eulagise: In order to attach the EULA to the .dmg file, we make use of the eulagise script. This script is written in PERL and is based on a more fully-featured script. The script can be downloaded from GitHub [https://github.com/CompoFX/compo/blob/master/tool/eulagise.pl]. The builder expects the script to be executable and added to the PATH environment variable. This can be done with the following commands:

cp eulagise.pl /usr/local/bin/eulagise
chmod +x /usr/local/bin/eulagise
eulagise # to test it - it should show that you should add some flags

Building Tribler on macOS

Start by checking out the directory you want to clone (using git clone --recursive). Open a terminal and cd to this new cloned directory (referenced to as tribler_source in this guide).

Next, we should inject version information into the files about the latest release. This is done by the update_version_from_git.py script found in Tribler/Main/Build. Invoke it from the tribler_source directory by executing:

build/update_version_from_git.py

Now execute the builder with the following command:

build/mac/makedist_macos.sh

This will create the .dmg file in the tribler_source/dist directory.

Debian and derivatives

Run the following commands in your terminal:

sudo apt-get install devscripts python-setuptools
cd tribler
build/update_version_from_git.py
python3 -m PyInstaller tribler.spec
cp -r dist/tribler build/debian/tribler/usr/share/tribler
dpkg-deb -b build/debian/tribler tribler.deb

This will build a tribler.deb file, including all dependencies and required libraries.

Other Unixes

We don’t have a generic setup.py yet.

So for the time being, the easiest way to package Tribler is to put Tribler/ in /usr/share/tribler/ and debian/bin/tribler in /usr/bin/. A good reference for the dependency list is debian/control.

Tribler REST API

Overview

The Tribler REST API allows you to create your own applications with the channels, torrents and other data that can be found in Tribler. Moreover, you can control Tribler and add data to Tribler using various endpoints. This documentation explains the format and structure of the endpoints that can be found in this API. Note that this API is currently under development and more endpoints will be added over time.

Making requests

The API has been built using the aiohttp [https://aiohttp.readthedocs.io] library. Requests go over HTTP where GET requests should be used when data is fetched from the Tribler core and POST requests should be used if data in the core is manipulated (such as adding a torrent or removing a download). Responses of the requests are in JSON format. Tribler should be running either headless or with the GUI before you can use this API. To make successful requests, you should pass the X-Api-Key header, which can be found in your Tribler configuration file (triblerd.conf).

Some requests require one or more parameters. These parameters are passed using the JSON format. An example of performing a request with parameters using the curl command line tool can be found below:

curl -X PUT -H "X-Api-Key: <YOUR API KEY>" http://localhost:8085/mychannel/rssfeeds/http%3A%2F%2Frssfeed.com%2Frss.xml

Alternatively, requests can be made using Swagger UI by starting Tribler and opening http://localhost:8085/docs in a browser.

Error handling

If an unhandled exception occurs the response will have code HTTP 500 and look like this:

{
 "error": {
 "handled": False,
 "code": "SomeException",
 "message": "Human readable error message"
 }
}

If a valid request of a client caused a recoverable error the response will have code HTTP 500 and look like this:

{
 "error": {
 "handled": True,
 "code": "DuplicateChannelIdError",
 "message": "Channel name already exists: foo"
 }
}

Download states

There are various download states possible which are returned when fetching downloads. These states are explained in the table below.

	DLSTATUS_ALLOCATING_DISKSPACE

	Libtorrent is allocating disk space for the download

	DLSTATUS_WAITING4HASHCHECK

	The download is waiting for the hash check to be performed

	DLSTATUS_HASHCHECKING

	Libtorrent is checking the hashes of the download

	DLSTATUS_DOWNLOADING

	The torrent is being downloaded

	DLSTATUS_SEEDING

	The torrent has been downloaded and is now being seeded to other peers

	DLSTATUS_STOPPED

	The torrent has stopped downloading, either because the downloading has completed or the user has stopped the download

	DLSTATUS_STOPPED_ON_ERROR

	The torrent has stopped because an error occurred

	DLSTATUS_METADATA

	The torrent information is being fetched from the DHT

	DLSTATUS_CIRCUITS

	The (anonymous) download is building circuits

Endpoints

	Create torrent

	Debug

	Downloads

	Events

	Libtorrent

	Metadata

	Search

	Settings

	Shutdown

	State info

	Statistics

	Torrent info

	TrustChain

	Trust View

	Upgrader

Create torrent

	
POST /createtorrent

	Create a torrent from local files and return it in base64 encoding.

	Query Parameters

	
	download (boolean) – Flag indicating whether or not to start downloading

	Request JSON Object

	
	description (string) –

	export_dir (string) –

	files[] (string) –

	name (string) –

	trackers[] (string) –

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –

Debug

	
GET /debug/circuits/slots

	Return information about the slots in the tunnel overlay.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	slots[].competing (integer) –

	slots[].random (integer) –

	
GET /debug/cpu/history

	Return information about CPU usage history.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	cpu_history[].cpu (number) –

	cpu_history[].time (integer) –

	
GET /debug/log

	Return content of core or gui log file & max_lines requested.

	Query Parameters

	
	process (string) – Specifies which log to return

	max_lines (integer) – Maximum number of lines to return from the log file

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	content (string) –

	max_lines (integer) –

	
GET /debug/memory/dump

	Return a Meliae-compatible dump of the memory contents.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The content of the memory dump file

	
GET /debug/memory/history

	Return information about memory usage history.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	memory_history[].mem (integer) –

	memory_history[].time (integer) –

	
GET /debug/open_files

	Return information about files opened by Tribler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	open_files[].fd (integer) –

	open_files[].path (string) –

	
GET /debug/open_sockets

	Return information about open sockets.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	open_sockets[].family (integer) –

	open_sockets[].laddr (string) –

	open_sockets[].raddr (string) –

	open_sockets[].status (string) –

	open_sockets[].type (integer) –

	
DELETE /debug/profiler

	Stop the profiler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	success (boolean) –

	
GET /debug/profiler

	Return information about the state of the profiler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	state (string) – State of the profiler (STARTED or STOPPED)

	
PUT /debug/profiler

	Start the profiler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	success (boolean) –

	
GET /debug/threads

	Return information about running threads.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	threads[].frames[] (string) –

	threads[].thread_id (integer) –

	threads[].thread_name (string) –

Downloads

	
GET /downloads

	Return all downloads, both active and inactive

This endpoint returns all downloads in Tribler, both active and inactive. The progress is a number ranging from 0 to 1, indicating the progress of the specific state (downloading, checking etc). The download speeds have the unit bytes/sec. The size of the torrent is given in bytes. The estimated time assumed is given in seconds.

Detailed information about peers and pieces is only requested when the get_peers and/or get_pieces flag is set. Note that setting this flag has a negative impact on performance and should only be used in situations where this data is required.

	Query Parameters

	
	get_peers (boolean) – Flag indicating whether or not to include peers

	get_pieces (boolean) – Flag indicating whether or not to include pieces

	get_files (boolean) – Flag indicating whether or not to include files

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	downloads.anon_download (boolean) –

	downloads.availability (number) –

	downloads.destination (string) –

	downloads.error (string) –

	downloads.eta (integer) –

	downloads.files (string) –

	downloads.hops (integer) –

	downloads.infohash (string) –

	downloads.max_download_speed (integer) –

	downloads.max_upload_speed (integer) –

	downloads.name (string) –

	downloads.num_peers (integer) –

	downloads.num_seeds (integer) –

	downloads.peers (string) –

	downloads.progress (number) –

	downloads.ratio (number) –

	downloads.safe_seeding (boolean) –

	downloads.size (integer) –

	downloads.speed_down (number) –

	downloads.speed_up (number) –

	downloads.status (string) –

	downloads.time_added (integer) –

	downloads.total_down (integer) –

	downloads.total_pieces (integer) –

	downloads.total_up (integer) –

	downloads.trackers (string) –

	downloads.vod_mode (boolean) –

	downloads.vod_prebuffering_progress (number) –

	downloads.vod_prebuffering_progress_consec (number) –

	
PUT /downloads

	Start a download from a provided URI.

	Query Parameters

	
	get_peers (boolean) – Flag indicating whether or not to include peers

	get_pieces (boolean) – Flag indicating whether or not to include pieces

	get_files (boolean) – Flag indicating whether or not to include files

	Request JSON Object

	
	anon_hops (integer) – Number of hops for the anonymous download. No hops is equivalent to a plain download

	destination (string) – the download destination path of the torrent

	safe_seeding (boolean) – Whether the seeding of the download should be anonymous or not

	uri (string) – The URI of the torrent file that should be downloaded. This URI can either represent a file location, a magnet link or a HTTP(S) url. (required)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	infohash (string) –

	started (boolean) –

	
DELETE /downloads/{infohash}

	Remove a specific download.

	Parameters

	
	infohash (string) – Infohash of the download to remove

	Request JSON Object

	
	remove_data (boolean) – Whether or not to remove the associated data

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	infohash (string) –

	removed (boolean) –

	
PATCH /downloads/{infohash}

	Update a specific download.

	Parameters

	
	infohash (string) – Infohash of the download to update

	Request JSON Object

	
	anon_hops (integer) – The anonymity of a download can be changed at runtime by passing the anon_hops parameter, however, this must be the only parameter in this request.

	selected_files[] (integer) –

	state (string) – State parameter to be passed to modify the state of the download (resume/stop/recheck)

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	infohash (string) –

	modified (boolean) –

	
GET /downloads/{infohash}/files

	Return file information of a specific download.

	Parameters

	
	infohash (string) – Infohash of the download to from which to get file information

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	files[].included (boolean) –

	files[].index (integer) –

	files[].name (string) –

	files[].progress (number) –

	files[].size (integer) –

	
GET /downloads/{infohash}/stream/{fileindex}

	Stream the contents of a file that is being downloaded.

	Parameters

	
	infohash (string) – Infohash of the download to stream

	fileindex (string) – The fileindex to stream

	Status Codes

	
	206 Partial Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7] – Contents of the stream

	
GET /downloads/{infohash}/torrent

	Return the .torrent file associated with the specified download.

	Parameters

	
	infohash (string) – Infohash of the download from which to get the .torrent file

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The torrent

Events

	
GET /events

	Open an EventStream for receiving Tribler events.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	event (object) –

	type (string) –

Libtorrent

	
GET /libtorrent/session

	Return Libtorrent session information.

	Query Parameters

	
	hop (string) – The hop count of the session for which to return information

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Return a dictonary with key-value pairs from the Libtorrent session information

	Response JSON Object

	
	hop (integer) –

	settings (object) –

	
GET /libtorrent/settings

	Return Libtorrent session settings.

	Query Parameters

	
	hop (string) – The hop count of the session for which to return settings

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Return a dictonary with key-value pairs from the Libtorrent session settings

	Response JSON Object

	
	hop (integer) –

	settings (object) –

Metadata

	
DELETE /metadata

	Delete channel entries.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Returns a list of deleted entries

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –

	
PATCH /metadata

	Update channel entries.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Returns a list of updated entries

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] –

	
GET /metadata/torrents/{infohash}/health

	Fetch the swarm health of a specific torrent.

	Parameters

	
	infohash (string) – Infohash of the download to remove

	Query Parameters

	
	timeout (integer) – Timeout to be used in the connections to the trackers

	refresh (integer) – Whether or not to force a health recheck. Settings this to 0 means that the health of a torrent will not be checked again if it was recently checked.

	nowait (integer) – Whether or not to return immediately. If enabled, results will be passed through to the events endpoint.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	tracker.error (string) –

	tracker.infohash (string) –

	tracker.leechers (integer) –

	tracker.seeders (integer) –

	
GET /metadata/{public_key}/{id}

	Get channel entries.

	Parameters

	
	public_key (string) –

	id (string) –

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Returns a list of entries

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] –

	
PATCH /metadata/{public_key}/{id}

	Update a single channel entry.

	Parameters

	
	public_key (string) –

	id (string) –

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The updated entry

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] –

Search

	
GET /search

	Perform a search for a given query.

	Query Parameters

	
	last (integer) – Limit the range of the query

	remote_query (boolean) –

	first (integer) – Limit the range of the query

	category (string) –

	metadata_type (array) –

	sort_by (string) – Sorts results in forward or backward, based on column name (e.g. “id” vs “-id”)

	exclude_deleted (boolean) –

	hide_xxx (boolean) – Toggles xxx filter

	sort_desc (boolean) –

	txt_filter (string) – FTS search on the chosen word* terms

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	chant_dirty (boolean) –

	torrents[].category (string) –

	torrents[].commit_status (integer) –

	torrents[].date (integer) –

	torrents[].id (integer) –

	torrents[].infohash (string) –

	torrents[].last_tracker_check (integer) –

	torrents[].name (string) –

	torrents[].num_leechers (integer) –

	torrents[].num_seeders (integer) –

	torrents[].public_key (string) –

	torrents[].relevance_score (integer) –

	torrents[].size (integer) –

	torrents[].type (string) –

	
GET /search/completions

	Return auto-completion suggestions for a given query.

	Query Parameters

	
	q (string) – Search query

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	completions[] (string) –

Settings

	
GET /settings

	Return all the session settings that can be found in Tribler.

This endpoint returns all the session settings that can be found in Tribler.

It also returns the runtime-determined ports, i.e. the ports for the SOCKS5 servers. Please note that a port with a value of -1 in the settings means that the port is randomly assigned at startup.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	
POST /settings

	Update Tribler settings.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	modified (boolean) –

Shutdown

	
PUT /shutdown

	Shutdown Tribler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	shutdown (boolean) –

State info

	
GET /state

	Return the current state of the Tribler core.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	last_exception (string) –

	readable_state (string) –

	state (string) – One of three stats: STARTING, UPGRADING, STARTED, EXCEPTION

Statistics

	
GET /statistics/ipv8

	Return general statistics of IPv8.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	statistics.total_down (integer) –

	statistics.total_up (integer) –

	
GET /statistics/tribler

	Return general statistics of Tribler.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	statistics.database_size (integer) –

	statistics.num_channels (integer) –

	statistics.torrent_queue_stats[].failed (integer) –

	statistics.torrent_queue_stats[].pending (integer) –

	statistics.torrent_queue_stats[].success (integer) –

	statistics.torrent_queue_stats[].total (integer) –

	statistics.torrent_queue_stats[].type (string) –

Torrent info

	
GET /torrentinfo

	Return metainfo from a torrent found at a provided URI.

	Query Parameters

	
	torrent (string) – URI for which to return torrent information. This URI can either represent a file location, a magnet link or a HTTP(S) url.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Return a hex-encoded json-encoded string with torrent metainfo

	Response JSON Object

	
	metainfo (string) –

TrustChain

Trust View

	
GET /trustview

	Return the trust graph.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	bootstrap.download (integer) –

	bootstrap.progress (number) –

	bootstrap.upload (integer) –

	graph.edge[][] (integer) –

	graph.node.id (integer) –

	graph.node.key (string) –

	graph.node.pos[] (number) –

	graph.node.sequence_number (integer) –

	graph.node.total_down (integer) –

	graph.node.total_up (integer) –

	num_tx (integer) –

	root_public_key (string) –

Upgrader

	
POST /upgrader

	Skip the DB upgrade process, if it is running.

	Request JSON Object

	
	skip_db_upgrade (boolean) – Whether to skip the DB upgrade process or not

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] –

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] –

	Response JSON Object

	
	skip_db_upgrade (boolean) –

TrustChain

TrustChain is a tamper-resistant data structure that is used in Tribler to record community contributions. This blockchain-based distributed ledger can then be used to build a reputation mechanism that is able to identify free-riders. A basic implementation of TrustChain is available in our code base and available for other developers.

TrustChain is specifically designed to be transaction-agnostic which means that any transaction can be stored in TrustChain. In Tribler, this consists of the amount of uploaded and downloaded data.

Using TrustChain

Using TrustChain to store transaction is straightforward. Creating a new block is done by invoking the sign_block method of the community. The required arguments are the destination candidate (the counterparty of the transaction), your public key and the transaction itself, in the Python dictionary format. Note that this dictionary can only contain Python primitive types and no custom objects due to the serialization of the transaction when sending it to the other party.

Assuming that the transaction counterparty is online and the block is valid, the counterparty signs the block and sends it back where the received_half_block method is invoked, processing the received block.

Using TrustChain in your project

To use TrustChain in your own projects, one can create a subclass of TrustChainCommunity or use the TrustChainCommunity directly. This should be enough for basic usage. For more information about communities, we reference the reader to a Dispersy tutorial [http://dispersy.readthedocs.io/en/devel/usage.html#community].

In order to implement custom transaction validation rules, a subclass of TrustChainBlock should be made and the BLOCK_CLASS variable in the TrustChainCommunity should be updated accordingly. By overriding the validate_transaction method, you can add your own custom validation rules.

 This document briefly describes the main ideas and design decisions behind the Channels 2.0 (GigaChannels) system.

Channels architecture

In Tribler, users can share their torrents collection by creating a “Channel” (a la Youtube)
and adding some torrents to it.
The channel and its contents will then be shown to other Tribler users in the common list of
“Discovered” channels. Users can keyword search channels for content.
Channels popularity rating helps users identify quality content.

Basically, Channels 2.0 works by spreading gossip about available channels, downloading channels “subscribed”
by the user and putting them into the local channels database (Metadata Store).
When subscribed, channels are transferred through Libtorrent.
The infohashes linking to these “channel torrents” are sent around by specialized IPv8 communities
(GigaChannel Community and RemoteQuery Community). Each metadata entry is individually signed by its author’s
private key, preventing other users from modifying other’s channels.
The user can create multiple channels with a tree of internal “folders”.
Channels and metadata entries can be updated or deleted by their author.

The Channels system consists of a number of disparate, complementary subsystems:

	Metadata Store

	GigaChannel Manager

	GigaChannel Community

	RemoteQuery Community

	VSIDS heuristics for channels popularity

What is a channel?

A channel is a collection of signed metadata entries. These entries form a forest of channel/folder(collection)
trees. Every metadata entry contains an id, a timestamp and a pointer to the id of its parent channel/folder.
Every metadata entry is individually signed by the creator host’s private key. The signature is included
in the serialized form of the entry, along with the public key. This allows the entries to be trustfully spread
through a network of untrusting strangers, if all of them trust the entry creator’s public key.

A channel exists in two forms:

	a set of DB entries in a PonyORM-backed SQLite DB (The DB form).

	a stream of serialized entries broken down into lz4-packed chunks
dumped into files in a torrent (the Torrent form).

A channel entry is added to the local DB only if it passes the “logical firewall” with strict criteria for
correctness (e.g. signature check, etc.). This is true for no matter the way an entry enters the system, be it
from the torrent form, or from any kind of network packet.

	A user can have an arbitrary number of channels in the “domain” of his or her public key.

	A channel can have an arbitrary number of nested folders/metadata entries.

Detailed description of the serialization (“Commit”) process and serialization formats
used by Channels system can be found in the following documents:

	Metadata lifecycle in the Channels system
	The discrete clock

	Channel creation

	Torrent metadata entry creation

	Committing the channel contents to disk

	Delivering the channel entry to another host

	Processing the channel from disk

	Free-for-all metadata entries

	Payload types and serialization formats
	SignedPayload

	ChannelNodePayload

	MetadataNodePayload

	TorrentMetadataPayload

	CollectionNodePayload

	ChannelMetadataPayload

	DeletedMetadataPayload

Metadata Store

The Metadata Store (MDS) consists of:

	PonyORM bindings (class definitions)

	methods for converting channels between DB and Torrent forms.

The process of dumping a channel to a torrent is called a “commit”, because it creates a serialized
snapshot of the channel. For details, see the documentation on channel torrent storage.

GigaChannel Manager

The GigaChannel Manager (GM) is responsible for downloading channel torrents and processing them into MDS.
GM regularly queries MDS and Tribler Download Manager for state changes and starts required actions:

	for subscribed channels that must be downloaded or updated GM starts downloading the corresponding torrents;

	for already downloaded channel torrents GM starts processing them into MDS;

	GM deletes old channel torrents that does not belong to any channel.

Internally, GM uses a queue of actions. GM queue tries to be smart and only do the necessary operations
For instance, if the user subscribes to a channel, then immediately unsubscribes from
it, and then subscribes to it again, the channel will only be downloaded once.

The looping task + actions queue design is necessary to prevent the callback / race condition nightmare of synchronizing
Libtorrent’s and asyncio’s reactors.

GigaChannel Community

The GigaChannel Community (GC) is the original channels gossip/search overlay deployed with the first implementation
of Channels 2.0. It plays the following roles:

	spreading push-based gossip of subscribed channels, along with some preview contents;

	sending and serving remote keyword search queries (initiated by searching for stuff in the Tribler GUI).

Channel gossip

At regular intervals, GC queries MDS for a random subscribed channel and
assembles a “preview blob” containing the channel metadata entry and some of its contents.
GC then sends this preview blobs to random peers in push-based gossip.

Keyword search

When the user initiates a keyword search, GS sends a request to a number of the host’s random peers.
The remote hosts respond to these requests with serialized metadata entries.
Upon receiving a response, calls MDS to process them. Then:

	if the received entries were already known, nothing happens;

	if the received entries are new entries or updated version of already known entries,
these will be added to MDS and shown to user through the GUI;

	if local MDS happens to have newer versions of some of the received entries, GC will send the newer
entries back as a gratuitous update.
(“Hey buddy, that’s old news! I got a newer version of the stuff you gave me. Here, take it for free.)

GigaChannel Community is supposed to be superseded by the more robust RemoteQuery Community.

RemoteQuery Community

The RemoteQuery Community (RQC) essentially provides a way to query remote hosts’ MDS
with the same multi-purpose get_entries method that is used by the local metadata REST endpoint.
While looking dangerous on the surface (hello, SQL injection!), it only allows for very limited types of SELECT-like
queries. The philosophy of RQC is that it never allows to get more information from the host
that is not already exposed by the network through other means (e.g. GigaChannel Community).
RQC plays the following roles:

	Pulling subscribed channels from other host during endless walk. This allows for fast bootstrapping Channel
contents on new clients.

	Providing a generic mechanism for exchanging metadata info between hosts.

	Enabling researches to gather useful statistics from metadata-gathering walks.

VSIDS heuristics

VSIDS stands for Variable State Independent Decaying Sum heuristic. Its basic idea is that the “weight”
of some element additively increases on each access to that element, but multiplicatively decreases (decays)
over time. VSIDS is close to timed PageRank in its results in the sense it selects variables with
high temporal degree centrality and temporal eigenvector centrality (see. “Understanding VSIDS Branching Heuristics
in Conflict-Driven Clause-Learning SAT Solvers” by Jia Hui Liang et. al.).

We use VSIDS to calculate the channel popularity. Whenever a channel is received by RQC or GC,
its rating is bumped additively. Over the time, channels ratings decay in such a way, that a channel’s rating
is reduced 2.78 times over 3 days. As a classic optimization, instead of decaying all the channel entries all the time,
we increase the bump amount proportionally. The implementation also includes standard VSIDS features
such as normalization and float overflow protection/renormalization.
An important detail of our implementation is that the a single host can never bump the channel more than once.
Instead, it can only “renew” its vote. This is achieved by storing the last vote for each host/channel pair
along with its bump amount, and deducting it from the channel vote rating before applying the vote again,
with the current bump amount.

VSIDS is implemented as a part of MDS.

 This document describes the format for storing, saving and
loading metadata entries to/from file-based format that is
sent as torrents by the Channels system.

Metadata lifecycle in the Channels system

It is easiest to show the inner workings of the Channels system
by following the full path of a metadata entry from its creation to the moment it arrives
into another host’s database.
In brief, the channel is going through the following stages during its lifetime:

	Channel creation or Torrent metadata entry creation - as a tree of metadata entries in the PonyORM DB

	Committing the channel contents to disk in the form of a serialized, append-only stream of updates,
broken down into mdblob files

	Creating a torrent from the serialized stream/mdblob files

	Delivering the channel entry to another host via e.g. gossip through RemoteQuery community

	Downloading the channel by infohash (using Libtorrent)

	Processing the channel from disk on the remote host and updating the remote hosts’ DB accordingly

The discrete clock

An important part of the Channels design is its usage of discrete timestamps to note
the order of creation/modification of metadata entries. The timestamps’ meaning is local
to the public key domain. This allows us to use a simple increasing discrete counter
that is initiated at Tribler startup from the local time.
The counter is increased by +1 on each tick (e.g. generation of a timestamp).

Channel creation

The user creates a personal channel by creating a ChannelTorrent entry in the database:

	Property

	Value

	Comment

	metadata_type

	400 (CHANNEL_TORRENT)

	used as the “discriminator” by PonyORM

	flags

	0

	

	public_key

	host’s public key

	identifies the “user domain” of the entry

	id

	random integer

	uniquely identifies the entry in the domain

	origin

	0

	Points to the parent or the channel/folder.

	timestamp

	current discrete_clock value

	

	infohash

	assigned randomly

	

	size

	0

	

	torrent_date

	current datetime

	

	title

	given by the user

	indexed by FTS

	tags

	
	

	tracker_info

	
	

	num_entries

	0

	

	start_timestamp

	same as timestamp

	

	signature

	generated with the host’s private key
from all the serialized fields (above)

	

	status

	NEW

	

	local_version

	same as timestamp

	

Note that discrete_clock is increased by +1 after each usage.

Torrent metadata entry creation

The user adds a torrent to Tribler by creating a TorrentMetadata entry in the database:

	Property

	Value

	metadata_type

	300 (REGULAR_TORRENT)

	flags

	0

	public_key

	host’s public key

	id

	random integer

	origin

	the id of the parent channel

	timestamp

	current discrete_clock value

	infohash

	assigned from the provided torrent

	size

	assigned from the provided torrent

	torrent_date

	assigned from the provided torrent

	title

	assigned from the provided torrent

	tags

	Text-based “category” of the torrent,
assigned by analyzing the contents
from the provided torrent

	tracker_info

	assigned from the torrent provided by user

	signature

	generated with the host’s private key
from all the serialized fields (above)

	status

	NEW

Committing the channel contents to disk

The basic idea of “commit” is to represent the changes to the channel tree as a stream
of data, serialize that stream, compress it, break down into files, add the files to the existing
channel directory, update the channel torrent from it, then update and re-sign the toplevel channel
entry with the infohash of the updated channel torrent.

	After the GUI (or the user directly) initializes the commit channel action,
the Metadata Store scans the domain of the host’s public key for entries
in the NEW, UPDATED or DELETED status.

	For every new/updated entry, the Core builds the path from the entry to its root
channel (the channel with origin_id==0).

	New/updated entries are sorted by timestamp.

	Folder entries on the path to the channel root are updated with new counts of torrents in them (num_entries),
recursively. These receive a new timestamp``s from ``discrete_clock and signature. Their status is changed
to UPDATED.

	All the UPDATED and NEW entries in the channel are serialized and concatenated
into a single stream, that is incrementally compressed with lz4 algorithm [https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)] and split into
1 MB-sized chunks called mdblobs. The compression is performed incrementally, until the compressed mdblob size
fits in 1 MB. Every blob is individually lz4-unpackable.

	The mdblobs are written into the channel’s directory that is located at
.Tribler/<version>/channels/<first 32 characters of hexlified public key><hexademical representation of channel's id padded to 16 characters>
(hexlify(public_key)[:32] + "{:0>16x}".format(id))

	Afterwards, the mdblob is dumped into a new file in the channel’s directory.
The filename follows the pattern <last_metadata_entry's_timestamp>.mdblob.lz4.

	The DELETE entries require special treatment. For each metadata entry marked DELETE,
a DeletedMetadataPayload is created with its delete_signature field containing
the signature of the metadata entry to be deleted. Due to a design mistake, these payloads got
no timestamp field. This resulted in a nasty error in those cases when a DELETE entry would
be placed the last in an mdblob file. As a workaround, the DELETE entries are now serialized
last in the stream, but whenever an mdblob file ends with such an entry, the it gets the filename
from a discrete_clock tick.

	When all the changes are dumped to the disk, Metadata Store calls Libtorrent to create a torrent
from the channel directory to obtain the new infohash.

	The toplevel channel entry is updated with the new infohash, num_entries, size,
and a timestamp from the discrete_clock tick. The entry’s signature is updated accordingly.

	If the whole commit procedure finishes without errors, all the newly serialized entries change
their status to COMMITTED.

Delivering the channel entry to another host

A channel entry can end up at another host in multiple ways, most of which involve
GigaChannel or RemoteQuery community:
* A search query through GigaChannel community can net a channel entry
* A channel entry can be queried by RemoteQuery community walking an querying for subscribed channels
* A channel entry can be gossiped by GigaChannel community (along with some preview contents).

Initially, when a host receives an unknown Channel entry, it will set its local_version to 0.
Whenever a host receives a channel entry with the same public key and id as it already know, but with a higher timestamp
it will update the entry with the data from the new one. If a channel is subscribed by user and
its local_version is lower that its timestamp, GigaChannelManager will initiate the process of
downloading/processing the channel. Note that local_version and other local properties are not
overwritten by updating the channel entry. Only non-local (i.e. payload-serialized) attributes are updated.

Processing the channel from disk

After the channel torrent was downloaded by GigaChannel Manager, the processing procedure is initiated.

	Processing is performed by sequentially reading the next mdblob file that has a filename/number that is higher than
the current local_timestamp of the processed channel.

	start_timestamp puts the lower bound on the mdblob’s names/timestamps that should be processed.
Its main purpose is enabling the possibility of defragmentation or complete reset of a channel.

	All the metadata entries in each processed mdblob are unpacked, deserialized,
checked for correct signature and added to the database
the same way as if they were received from network (e.g. trough a query in by RemoteQuery community)

	As soon as the mdblob file processing is finished, the channel’s local_version is set to the filename number.
This guarantees that if processing is interrupted by e.g. a power fail, processing will restart from the same mdblob.

	The last mdblob’s filename is equal to the channel’s timestamp. Therefore, as soon as the last
mdblob is processed, the channel’s local_version becomes equal to its timestamp, thus
putting the channel to “Complete” state.

Free-for-all metadata entries

Free-for-all (FFA) metadata entry is a special kind of unsigned metadata entry. It is impossible to attribute such
an entry to any particular host, because the entry contain no traces of the host that created them. In other words,
given one torrent file, two different hosts will independently create the same FFA entry.

FFA entries are created whenever the user downloads a torrent that is unknown to MDS. Whenever MDS receives
a FFA entries are not attributed to any channel. Whenever MDS receives a signed metadata entry that has the same
infohash as an FFA entry, it will remove the FFA entry. FFA entries exist for the reason of
helping local and remote keyword search.

 This document contains information about serialization format used by Metadata Store
to serialize metadata entries before sending them over the network and saving them on disk

Payload types and serialization formats

All payloads follow the same pattern:

serialized parent metadata type + type specific data + signature.

Payload field types are expressed in
Python Struct notation [https://docs.python.org/2/library/struct.html].

Metadata types are identified by integers as follows:

	ORM type

	Payload type

	Python constant

	Numeric metadata type

	
	
	TYPELESS

	100

	ChannelNode

	ChannelNodePayload

	CHANNEL_NODE

	200

	MetadataNode

	MetadataNodePayload

	METADATA_NODE

	210

	CollectionNode

	CollectionNodePayload

	COLLECTION_NODE

	220

	TorrentMetadata

	TorrentMetadataPayload

	REGULAR_TORRENT

	300

	ChannelMetadata

	ChannelMetadataPayload

	CHANNEL_TORRENT

	400

	
	DeletedMetadataPayload

	DELETED

	500

SignedPayload

This is the base class/payload type. It is never used on the wire “as is” and should only be used as
a parent class for other payloads.

	The signature is applied to the end of the serialized payload.

	flags field is reserved for future use.

	Public key and signature use LibNaCl Curve25519 ECC.

	If both the signature and public key are all-zeroes, the payload is a “Free-for-All” (FFA) metadata entry.

	Metadata type

	Flags (reserved)

	Public key

	Signature

	H

	H

	64s

	64s

	Signed

	

ChannelNodePayload

This is another “virtual” class/payload type. It represents an abstract node in
the channel internal hierarchy graph.

	id is a random integer which, together with the public key,
uniquely identifies the ChannelNode in the Channels system.

	origin is the id of the parent ChannelNode. 0 in this field means a top-level, parentless entry.

	timestamp stands for the “creation time” of this ChannelNode.
Typically, it contains the value from the monotonically increasing discrete clock-like counter DiscreteClock
in the MetadataStore.

	Metadata type

	Flags (reserved)

	Public key

	Id

	Origin

	Timestamp

	Signature

	H

	H

	64s

	Q

	Q

	Q

	64s

MetadataNodePayload

This is a generic “virtual” metadata-containing node in the channels graph.

	title field contains the entry’s title, e.g. a name for a movie or a title for a torrent.
It is indexed by FTS in MetadataStore.

	tags field is reserved for human-readable tags usage. It is not indexed by FTS.
Currently, the first word in this field is interpreted as the entry’s category.
For ChannelTorrent entries, it contains channel description (for reasons of the legacy Channels system compatibility).

	Metadata type

	Flags (reserved)

	Public key

	Id

	Origin

	Timestamp

	Title

	Tags

	Signature

	H

	H

	64s

	Q

	Q

	Q

	varlenI

	varlenI

	64s

TorrentMetadataPayload

This is the primary type of payloads used in the Channels system - a payload for BitTorrent metadata.

	infohash stands for BitTorrent infohash, in binary form.

	size stands for the torrent size in bytes.

	torrent_date stands for the torrent creation date, in seconds since Unix Epoch.

	tracker_info is the tracker URL

	Note that this payload inherits directly from ChannelNodePayload, and not from MetadataNodePayload.
The title and tags field are moved to the end of the payload (for a dumb reason of micro-optimizing deserialization).

	Metadata type

	Flags (reserved)

	Public key

	Id

	Origin

	Timestamp

	Infohash

	Size

	Torrent date

	Title

	Tags

	Tracker info

	Signature

	H

	H

	64s

	Q

	Q

	Q

	20S

	Q

	I

	varlenI

	varlenI

	varlenI

	64s

CollectionNodePayload

This payload serializes CollectionNode entries, which are like ChannelTorrent entries, but w/o infohash field.
CollectionNode entries are used to represent intra-channel “folders” of torrents and/or other folders.

	num_entries field represents the number of entries that is contained in this Collection and its sub-collections.

	Metadata type

	Flags (reserved)

	Public key

	Id

	Origin

	Timestamp

	Title

	Tags

	Num entries

	Signature

	H

	H

	64s

	Q

	Q

	Q

	varlenI

	varlenI

	Q

	64s

ChannelMetadataPayload

This payload serializes ChannelTorrent entries, combining properties of CollectionNodePayload,
and TorrentMetadataPayload.

	start_timestamp represents the first timestamp in this channel.
It is used to limit the channel’s span back in time after e.g. defragmenting a channel or restarting it anew.

	torrent_date is used by the GUI to show when the channel was committed the last time (the “Updated” column).

	Metadata type

	Flags (reserved)

	Public key

	Id

	Origin

	Timestamp

	Infohash

	Size

	Torrent date

	Title

	Tags

	Tracker info

	Num entries

	Start timestamp

	Signature

	H

	H

	64s

	Q

	Q

	Q

	20s

	Q

	I

	varlenI

	varlenI

	varlenI

	Q

	Q

	64s

DeletedMetadataPayload

This payload is a “command” for the Channels system to delete an entry.
The entry to delete is pointed by its signature.

	Currently, this metadata can only exist in serialized form. It is never saved to DB.

	delete_signature the signature of the metadata entry to be deleted.

	Metadata type

	Flags (reserved)

	Public key

	Delete signature

	Signature

	H

	H

	64s

	64s

	64s

 HTTP Routing Table

 /createtorrent |
 /debug |
 /downloads |
 /events |
 /libtorrent |
 /metadata |
 /search |
 /settings |
 /shutdown |
 /state |
 /statistics |
 /torrentinfo |
 /trustview |
 /upgrader

 		 	

 		
 /createtorrent	

 	
 	
 POST /createtorrent	
 Create a torrent from local files and return it in base64 encoding.

 		 	

 		
 /debug	

 	
 	
 GET /debug/circuits/slots	
 Return information about the slots in the tunnel overlay.

 	
 	
 GET /debug/cpu/history	
 Return information about CPU usage history.

 	
 	
 GET /debug/log	
 Return content of core or gui log file & max_lines requested.

 	
 	
 GET /debug/memory/dump	
 Return a Meliae-compatible dump of the memory contents.

 	
 	
 GET /debug/memory/history	
 Return information about memory usage history.

 	
 	
 GET /debug/open_files	
 Return information about files opened by Tribler.

 	
 	
 GET /debug/open_sockets	
 Return information about open sockets.

 	
 	
 GET /debug/profiler	
 Return information about the state of the profiler.

 	
 	
 GET /debug/threads	
 Return information about running threads.

 	
 	
 PUT /debug/profiler	
 Start the profiler.

 	
 	
 DELETE /debug/profiler	
 Stop the profiler.

 		 	

 		
 /downloads	

 	
 	
 GET /downloads	
 Return all downloads, both active and inactive

 	
 	
 GET /downloads/{infohash}/files	
 Return file information of a specific download.

 	
 	
 GET /downloads/{infohash}/stream/{fileindex}	
 Stream the contents of a file that is being downloaded.

 	
 	
 GET /downloads/{infohash}/torrent	
 Return the .torrent file associated with the specified download.

 	
 	
 PUT /downloads	
 Start a download from a provided URI.

 	
 	
 DELETE /downloads/{infohash}	
 Remove a specific download.

 	
 	
 PATCH /downloads/{infohash}	
 Update a specific download.

 		 	

 		
 /events	

 	
 	
 GET /events	
 Open an EventStream for receiving Tribler events.

 		 	

 		
 /libtorrent	

 	
 	
 GET /libtorrent/session	
 Return Libtorrent session information.

 	
 	
 GET /libtorrent/settings	
 Return Libtorrent session settings.

 		 	

 		
 /metadata	

 	
 	
 GET /metadata/torrents/{infohash}/health	
 Fetch the swarm health of a specific torrent.

 	
 	
 GET /metadata/{public_key}/{id}	
 Get channel entries.

 	
 	
 DELETE /metadata	
 Delete channel entries.

 	
 	
 PATCH /metadata	
 Update channel entries.

 	
 	
 PATCH /metadata/{public_key}/{id}	
 Update a single channel entry.

 		 	

 		
 /search	

 	
 	
 GET /search	
 Perform a search for a given query.

 	
 	
 GET /search/completions	
 Return auto-completion suggestions for a given query.

 		 	

 		
 /settings	

 	
 	
 GET /settings	
 Return all the session settings that can be found in Tribler.

 	
 	
 POST /settings	
 Update Tribler settings.

 		 	

 		
 /shutdown	

 	
 	
 PUT /shutdown	
 Shutdown Tribler.

 		 	

 		
 /state	

 	
 	
 GET /state	
 Return the current state of the Tribler core.

 		 	

 		
 /statistics	

 	
 	
 GET /statistics/ipv8	
 Return general statistics of IPv8.

 	
 	
 GET /statistics/tribler	
 Return general statistics of Tribler.

 		 	

 		
 /torrentinfo	

 	
 	
 GET /torrentinfo	
 Return metainfo from a torrent found at a provided URI.

 		 	

 		
 /trustview	

 	
 	
 GET /trustview	
 Return the trust graph.

 		 	

 		
 /upgrader	

 	
 	
 POST /upgrader	
 Skip the DB upgrade process, if it is running.

Index

 This guide explains how to build Tribler on MacOS (10.10 to 10.13). The final result is a .dmg file which, when opened, allows Tribler.app to be copied to the Applications directory and or launched. Make sure the required packages required by Tribler are installed
from the Development instructions.

Required packages

	eulagise: In order to attach the EULA to the .dmg file, we make use of the eulagise script. This script is written in PERL and is based on a more fully-featured script. The script can be downloaded from GitHub [https://github.com/CompoFX/compo/blob/master/tool/eulagise.pl]. The builder expects the script to be executable and added to the PATH environment variable. This can be done with the following commands:

cp eulagise.pl /usr/local/bin/eulagise
chmod +x /usr/local/bin/eulagise
eulagise # to test it - it should show that you should add some flags

Building Tribler on macOS

Start by checking out the directory you want to clone (using git clone --recursive). Open a terminal and cd to this new cloned directory (referenced to as tribler_source in this guide).

Next, we should inject version information into the files about the latest release. This is done by the update_version_from_git.py script found in Tribler/Main/Build. Invoke it from the tribler_source directory by executing:

build/update_version_from_git.py

Now execute the builder with the following command:

build/mac/makedist_macos.sh

This will create the .dmg file in the tribler_source/dist directory.

 This section contains information about building Tribler on Windows. In the end you should be left with a .exe file which, when opened, enables users to install Tribler on their system.
This guide installs a 64-bit version of Tribler and has been tested on Windows 10 and Windows 2008 Server R2, 64-bit. It is recommended to create this builder on a system that is already able to run Tribler from a git checkout (it means that all the required packages required by Tribler are installed already). In case you want to build a 32 bit version, just install all the dependencies mentioned in 32 bit version.
Information about setting up a developer environment on Windows can be found here.

When you have installed zope, an empty __init__.py file must be present in the zope folder. If this file is missing, a No module named zope error will be thrown. Create this file in the site-packages/zope folder if it does not exist.

Required packages

To build a Tribler installer, you’ll need some additional scripts and packages. The versions used as of writing this guide are mentioned next to the package or script.
* The git command tools (version 2.7.0) are required to fetch the latest release information. These can be downloaded from here [https://git-scm.com/download/win].
* PyInstaller, a tool to create an executable from python files. Install the latest version from pip: pip install pyinstaller.
* The builder needs to find all packages that are required by Tribler so make sure you can run Tribler on your machine and that there are no missing dependencies.
* Nullsoft Scriptable Install System (NSIS) (version 2.5.0) is a script-driven Installer authoring tool for Microsoft Windows with minimal overhead. It can be downloaded here [http://nsis.sourceforge.net/Download]. We selected version 2.5 as the uninstall functions were not called properly in 3.03b.
* Three plugins are required.The UAC plugin is the first. This can be downloaded from here [http://nsis.sourceforge.net/UAC_plug-in] (version 0.2.4c). How to install a plugin can be found here [http://nsis.sourceforge.net/How_can_I_install_a_plugin].
* The second plugin that is needed is AccessControl plug-in (version 1.0.8.1). It can be downloaded here [http://nsis.sourceforge.net/AccessControl_plug-in].
* The third plugin required is NSIS Simple Firewall Plugin (version 1.2.0). You can download it here [http://nsis.sourceforge.net/NSIS_Simple_Firewall_Plugin].
* The fourth plugin needed is NSProcess (Version 1.6.7), which can be downloaded here [http://nsis.sourceforge.net/NsProcess_plugin].
* A version of Microsoft Visual Studio should be installed (we use 2012), but make sure you do not have the build-tools only. The full (community) edition can be downloaded here [https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx].

Building & Packaging Tribler

Start by cloning Tribler if you haven’t done already (using the git clone --recursive command).
Next, create a build folder directly on your C:\ drive.
Inside the build folder, put the following items:

	A folder certs containing a .pfx key. In our case it’s named swarmplayerprivatekey.pfx. Make sure to rename paths in makedist_win.bat to match your file name.

	vc_redist_110.exe (Visual C++ Redistributable for Visual Studio 2012), which is available here [https://www.microsoft.com/en-us/download/details.aspx?id=30679]. In case you build 32 bit, get the x86 version. Once more, don’t forget to rename the file.

	libsodium.dll which can be downloaded from libsodium.org [https://download.libsodium.org/libsodium/releases/] (as of writing version 1.0.8).

	The openssl dll files libeay32.dll, libssl32.dll and ssleay32.dll (place them in a directory named openssl).

Then, set a PASSWORD environment variable [https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx?mfr=true] with its value set to the password matching the one set in your .pfx file.

Finally, open a command prompt and enter the following commands (Change 11.0 depending on your version of Microsoft Visual Studio):
Note that for building 32 bit you need to pass anything but 64, i.e. 32 or 86 to the update_version_from_git.py script.

cd tribler
python build/update_version_from_git.py 64
build\win\makedist_win.bat 64

This builds an .exe installer which installs Tribler.

 This section contains information about setting up a Tribler development environment on Linux systems.

Debian/Ubuntu/Mint

First, install the required dependencies by executing the following command in your terminal:

sudo apt install git libssl-dev libx11-6 libgmp-dev python3 python3-minimal python3-pip python3-libtorrent python3-pyqt5 python3-pyqt5.qtsvg python3-scipy

Secondly, install python packages

pip3 install aiohttp aiohttp_apispec chardet configobj decorator libnacl matplotlib netifaces networkx pony psutil pyasn1 requests lz4 pyqtgraph pyyaml

Then, install py-ipv8 python dependencies

cd src/pyipv8
pip3 install --upgrade -r requirements.txt

You can now clone the Tribler source code, and run Tribler by executing the following commands:

git clone https://github.com/tribler/tribler --recursive
cd tribler/src
./tribler.sh

Alternatively, you can run the latest stable version of Tribler by downloading and installing the .deb file from here [https://github.com/tribler/tribler/releases/]. This option is only recommended for running Tribler and is not suitable for development.

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

 Tribler development environment setup on MacOS (10.10 to latest).

HomeBrew

This guide will outline how to setup a Tribler development environment on Mac.

PyQt5

If you wish to run the Tribler Graphical User Interface, PyQt5 should be available on the system. To install PyQt5, we first need to install Qt5, a C++ library which can be installed with Brew:

brew install python3 qt5 sip pyqt5
brew cask install qt-creator # if you want the visual designer
brew link qt5 --force # to allow access qmake from the terminal

qmake --version # test whether qt is installed correctly

Libtorrent

You can install libtorrent with Brew using the following command:

brew install libtorrent-rasterbar

To verify a correct installation, you can execute:

python3
>>> import libtorrent

Symbol not found: _kSCCompAnyRegex error

If you see Symbol not found: _kSCCompAnyRegex error, then follow
https://github.com/Homebrew/homebrew-core/pull/43858 for the explanation.

You can build libtorrent by yourself: http://libtorrent.org/python_binding.html
or by using this workaround from PR:

	Edit brew formula:

brew edit libtorrent-rasterbar

	Add on the top of the install function ENV.append string as described below:

def install
 ENV.append "LDFLAGS", "-framework SystemConfiguration -framework CoreFoundation"

	Build libtorrent-rasterbar from source:

brew install libtorrent-rasterbar --build-from-source

Other Packages

There are a bunch of other packages that can easily be installed using pip and brew:

brew install gmp mpfr libmpc libsodium
cd src && python3 -m pip install -r requirements.txt

To enable Bitcoin wallet management (optional), you should install the bitcoinlib library (support for this wallet is experimental):

python3 -m pip install bitcoinlib==0.4.10

Tribler

The security system on MacOS can prevent libsodium.dylib from being dynamically linked into Tribler when running Python. If this library cannot be loaded, it gives an error that libsodium could not be found. This is because the DYLD_LIBRARY_PATH cannot be set when Python starts. More information about this can be read here [https://forums.developer.apple.com/thread/13161].

The best solution to this problem is to link or copy libsodium.dylib into the Tribler root directory.

git clone --recursive https://github.com/Tribler/tribler.git
cd tribler
cp /usr/local/lib/libsodium.dylib ./ || cp /opt/local/lib/libsodium.dylib ./

You can now run Tribler by executing the following bash script in the src directory:

./tribler.sh

Proceed proceed to Build instructions

Help

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

 This section contains information about setting up a Tribler development environment on Windows. Unlike Linux based systems where installing third-party libraries is often a single apt-get command, installing and configuring the necessary libraries requires more attention on Windows. Moreover, the Windows environment has different file structures. For instance, where Linux is working extensively with .so (shared object) files, Windows uses DLL files.

Introduction

In this guide, all required dependencies of Tribler will be explained. It presents how to install these dependencies. Some dependencies have to be built from source whereas other dependencies can be installed using a .msi or .exe installer. The guide targets Windows 7 or higher, 64-bit systems, however, it is probably not very hard to install 32-bit packages.

First, Python 3 should be installed. If you already have a Python version installed, please check whether this version is 64 bit before proceeding.

python -c "import struct;print(8 * struct.calcsize('P'))"

This outputs whether your current installation is 32 or 64 bit.

Python can be downloaded from the official Python website [https://www.python.org/downloads/]. You should download the Windows x86-64 MSI Installer which is an executable. During the setup, remember to add Python to the PATH variable to access Python from the command line. The option to add Python to the PATH variable is unchecked by default! You can verify whether Python is installed correctly by typing python in the command line. If they are not working, verify whether the PATH variables are correctly set. Instructions on how to set path variable can be found here [http://www.computerhope.com/issues/ch000549.htm].

In order to compile some of the dependencies of Tribler, you will need the Visual Studio installed which can be downloaded from here [https://www.visualstudio.com/downloads/download-visual-studio-vs] or here [https://imagine.microsoft.com/en-us/Catalog/Product/101]. You should select the community edition. Visual Studio ships with a command line interface and all required tools that are used for building some of the Python packages. After the installation of Visual Studio, you should install the Visual C++ tools. This can be done from within Visual Studio by creating a new Visual C++ project. Visual Studio then gives an option to install the Visual C++ developer tools.

In case importing one of the modules fail due to a DLL error, you can inspect if there are files missing by opening it with Dependency Walker. It should show missing dependencies.

libtorrent

First, install Boost which can be downloaded from SourceForge [http://sourceforge.net/projects/boost/files/boost-binaries/]. Make sure to select the latest version and choose the version is compatible with your version of Visual C++ tools (probably msvc-14).

After installation, you should set an environment variable to let libtorrent know where Boost can be found. You can do this by going to Control Panel > System > Advanced > Environment Variables (more information about setting environment variables can be found here [http://www.computerhope.com/issues/ch000549.htm]). Now add a variable named BOOST_ROOT and with the value of your Boost location. The default installation location for the Boost libraries is C:\\local\\boost_<BOOST VERSION> where <BOOST VERSION> indicates the installed Boost version.

Next, you should build Boost.build. You can do this by opening the Visual Studio command prompt and navigating to your Boost libraries. Navigate to tools\\build and execute bootstrap.bat. This will create the b2.exe file. In order to invoke b2 from anywhere in your command line, you should add the Boost directory to your user PATH environment variable. After modifying your PATH, you should reopen your command prompt.

Now, download the libtorrent source code from GitHub [https://github.com/arvidn/libtorrent/releases] and extract it. It is advised to compile version 1.0.8. Note that you if you have a 32-bit system, you can download the .msi installer so you do not have to compile libtorrent yourself. Open the Developer Command Prompt shipped with Visual Studio (not the regular command prompt) and navigate to the location where you extracted the libtorrent source. In the directory where the libtorrent source code is located, navigate to bindings\\python and build libtorrent by executing the following command (this takes a while so make sure to grab a coffee while waiting):

b2 boost=source libtorrent-link=static address-model=64

This command will build a static libtorrent 64-bit debug binary. You can also build a release binary by appending release to the command given above. After the build has been completed, the resulting libtorrent.pyd can be found in LIBTORRENT_SOURCE\\bindings\\python\\bin\\msvc-14\\debug\\address-model-64\\boost-source\\link-static\\ where LIBTORRENT_SOURCE indicates the directory with the libtorrent source files. Copy libtorrent.pyd to your site-packages location (the default location is C:\\Python37\\Lib\\site-packages)

After successfully copying the libtorrent.pyd file either compiled or from the repository, you can check if the installation was successful:

python -c "import libtorrent" # this should work without any error

libsodium

Libsodium is required for the libnacl library, used for cryptographic operations. Libsodium can be download as precompiled binary from their website [https://download.libsodium.org/libsodium/releases/]. Download the latest version, built with msvc. Extract the archive to any location on your machine. Next, you should add the location of the dynamic library to your PATH variables (either as system variable or as user variable). These library files can be found in LIBSODIUM_ROOT\\x64\\Release\\v142\\dynamic\\ where LIBSODIUM_ROOT is the location of your extracted libsodium files. After modifying your PATH, you should reopen your command prompt. You test whether Python is able to load libsodium.dll by executing:

python -c "import ctypes; ctypes.cdll.LoadLibrary('libsodium')"

Note that this might fail on Python 3.8, since directories have to be explicitly whitelisted to load DLLs from them. You can either copy the libsodium.dll to your System32 directory or by whitelisting that directory using os.add_dll_directory when running Tribler.

Additional Packages

There are some additional packages which should be installed. They can easily be installed using pip:

pip install aiohttp aiohttp_apispec cffi chardet configobj cryptography decorator gmpy2 idna libnacl lz4 \
netifaces networkx numpy pillow psutil pyasn1 PyQt5 pyqtgraph pywin32 pyyaml

To enable Bitcoin wallet management (optional), you should install the bitcoinlib library (support for this wallet is highly experimental):

pip install bitcoinlib==0.4.10

Running Tribler

You should now be able to run Tribler from command line. Grab a copy of the Tribler source code and navigate in a command line interface to the source code directory. Start Tribler by executing the Batch script in the tribler/src directory:

tribler.bat

If there are any problems with the guide above, please feel free to fix any errors or create an issue [https://github.com/Tribler/tribler/issues/new] so we can look into it.

 _images/project_thin_badge.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Tribler’s documentation!

 		
 Introduction

 		
 Obtaining the latest release

 		
 Obtaining support

 		
 Contributing

 		
 Running Tribler from the repository

 		
 Packaging Tribler

 		
 Submodule notes

 		
 How to contribute to the Tribler project?

 		
 Checking out the Stabilization Branch

 		
 Reporting bugs

 		
 Pull requests

 		
 Branching model and development methodology

 		
 Branching model

 		
 Release lifecycle

 		
 Tags

 		
 Setting up the local repo

 		
 Working on new features or fixes

 		
 Getting your changes merged upstream

 		
 Misc guidelines

 		
 Setting up your development environment

 		
 Windows

 		
 Introduction

 		
 libtorrent

 		
 libsodium

 		
 Additional Packages

 		
 Running Tribler

 		
 MacOS

 		
 HomeBrew

 		
 Tribler

 		
 Linux

 		
 Debian/Ubuntu/Mint

 		
 Building Tribler

 		
 Windows

 		
 Required packages

 		
 Building & Packaging Tribler

 		
 MacOS

 		
 Required packages

 		
 Building Tribler on macOS

 		
 Debian and derivatives

 		
 Other Unixes

 		
 Tribler REST API

 		
 Overview

 		
 Making requests

 		
 Error handling

 		
 Download states

 		
 Endpoints

 		
 Create torrent

 		
 Debug

 		
 Downloads

 		
 Events

 		
 Libtorrent

 		
 Metadata

 		
 Search

 		
 Settings

 		
 Shutdown

 		
 State info

 		
 Statistics

 		
 Torrent info

 		
 TrustChain

 		
 Trust View

 		
 Upgrader

 		
 TrustChain

 		
 Using TrustChain

 		
 Using TrustChain in your project

 		
 Channels architecture

 		
 What is a channel?

 		
 Metadata lifecycle in the Channels system

 		
 Payload types and serialization formats

 		
 Metadata Store

 		
 GigaChannel Manager

 		
 GigaChannel Community

 		
 Channel gossip

 		
 Keyword search

 		
 RemoteQuery Community

 		
 VSIDS heuristics

_static/plus.png

_static/file.png

_static/minus.png

